

# **CIVIL AVIATION DIRECTIVE - 5**

# **UNITS OF MEASUREMENT**

CIVIL AVIATION AUTHORITY OF MALAYSIA





### Introduction

In exercise of the powers conferred by section 24O of the Civil Aviation Act 1969 (Act 3), the Chief Executive Officer makes this Civil Aviation Directive 5 – Units of Measurement To Be Used in Air and Ground Operations (CAD 5 – Units of Measurement), pursuant to Regulation 194 of the Malaysian Civil Aviation Regulations (MCAR 2016).

This CAD contains the standards and requirements and procedures pertaining to units of measurement to be used in air and ground operations and is compliant with Malaysian Civil Aviation Regulations. The standards and requirements in this CAD are based mainly on the Standards and Recommended Practices (SARPs) contained in the International Civil Aviation Organisation (ICAO) Annex 5 – Units of Measurement to Be Used in Air and Ground Operations.

This Civil Aviation Directives 5 – Unit of Measurement To Be Used in Air and Ground Operations (CAD 5 – Unit of Measurement) is published by the Chief Executive Officer under Section 24O of the Civil Aviation Act 1969 (Act 3) and come into operation on 1 May 2021.

### Non-compliance with this CAD

Any person who contravenes any provision in this CAD commits an offence and shall on conviction be liable to the punishments under Section 24O (2) of the Civil Aviation Act 1969 (Act 3) and/or under Malaysia Civil Aviation Regulation 2016.

(Captain Chester Voo Chee Soon)
Chief Executive Officer
Civil Aviation Authority of Malaysia



## **Civil Aviation Directive Components and Editorial Practices**

This Civil Aviation Directive is made up of the following components and are defined as follows:

**Standards:** Usually preceded by words such as "shall" or "must", are any specification for physical characteristics, configuration, performance, personnel or procedure, where uniform application is necessary for the safety or regularity of air navigation and to which Operators must conform. In the event of impossibility of compliance, notification to the CAAM is compulsory.

**Recommended Practices:** Usually preceded by the words such as "should" or "may", are any specification for physical characteristics, configuration, performance, personnel or procedure, where the uniform application is desirable in the interest of safety, regularity or efficiency of air navigation, and to which Operators will endeavour to conform.

**Appendices:** Material grouped separately for convenience but forms part of the Standards and Recommended Practices stipulated by the CAAM.

**Definitions:** Terms used in the Standards and Recommended Practices which are not self-explanatory in that they do not have accepted dictionary meanings. A definition does not have an independent status but is an essential part of each Standard and Recommended Practice in which the term is used, since a change in the meaning of the term would affect the specification.

**Tables and Figures:** These add to or illustrate a Standard or Recommended Practice and which are referred to therein, form part of the associated Standard or Recommended Practice and have the same status.

**Notes:** Included in the text, where appropriate, Notes give factual information or references bearing on the Standards or Recommended Practices in question but not constituting part of the Standards or Recommended Practices;

**Attachments:** Material supplementary to the Standards and Recommended Practices or included as a guide to their application.

It is to be noted that some Standards in this Civil Aviation Directive incorporates, by reference, other specifications having the status of Recommended Practices. In such cases, the text of the Recommended Practice becomes part of the Standard.

The units of measurement used in this document are in accordance with the International System of Units (SI) as specified in CAD 5. Where CAD 5 permits the use of non-SI alternative units, these are shown in parentheses following the basic units. Where two sets of units are quoted it must not be assumed that the pairs of values are equal and interchangeable. It may, however, be inferred that an equivalent level of safety is achieved when either set of units is used exclusively.

Any reference to a portion of this document, which is identified by a number and/or title, includes all subdivisions of that portion.

Throughout this Civil Aviation Directive, the use of the male gender should be understood to include male and female persons.



### **Record of revisions**

Revisions to this CAD shall be made by authorised personnel only. After inserting the revision, enter the required data in the revision sheet below. The 'Initials' has to be signed off by the personnel responsible for the change.

| Rev No. | Revision Date | Revision Details | Initials |
|---------|---------------|------------------|----------|
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
| ,       |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |
|         |               |                  |          |





# **Table of Content**

| 1 | GEN        | IERAL                                                                                      | 1-1  |
|---|------------|--------------------------------------------------------------------------------------------|------|
|   | 1.1        | CITATION                                                                                   | 1-1  |
|   | 1.2        | APPLICABILITY                                                                              | 1-1  |
|   | 1.3        | REVOCATION                                                                                 | 1-1  |
|   | 1.4        | Definitions                                                                                | 1-1  |
| 2 | UNI        | TS OF MEASUREMENTS                                                                         | 2-1  |
|   | 2.1        | International System of Units                                                              | 2-1  |
|   | 2.2        | APPLICATION OF UNITS OF MEASUREMENT                                                        | 2-1  |
|   | 2.3        | NON-INTERNATIONAL SYSTEM OF UNITS FOR PERMANENT USE WITH THE INTERNATIONAL SYSTEM OF UNITS | 2-1  |
|   | 2.4        | NON-INTERNATIONAL SYSTEM OF UNITS ALTERNATIVE UNITS PERMITTED FOR TEMPORARY USE WITH THE   |      |
|   | INTERNA    | ATIONAL SYSTEM OF UNITS                                                                    | 2-1  |
|   | 2.5        | CONVERSION FACTORS                                                                         | 2-1  |
| 3 | APP        | PENDICES                                                                                   | 3-1  |
|   | 3.1        | APPENDIX 1 – LIST OF PERSON                                                                | 2.1  |
|   | 3.2        | APPENDIX 2 – BASE UNITS                                                                    |      |
|   | 3.3        | APPENDIX 3 – SUPPLEMENTARY UNITS                                                           |      |
|   | 3.4        | APPENDIX 4 – DERIVED UNITS                                                                 |      |
|   | 3.5        | APPENDIX 5 – SI UNIT PREFIXES                                                              |      |
|   | 3.6        | APPENDIX 6 – STANDARD APPLICATION OF SPECIFIC UNITS OF MEASUREMENT                         |      |
|   | 3.7        | APPENDIX 7 – NON-SI UNITS FOR USE WITH THE SI                                              |      |
|   | 3.8        | APPENDIX 8 – NON-SI ONITS FOR USE WITH THE SI                                              |      |
|   | 3.8<br>3.9 | APPENDIX 9 – CONVERSION FACTORS TO INTERNATIONAL SYSTEM OF UNITS                           |      |
|   | 5.9        | APPENDIX 3 - CUNVERSION FACTORS TO INTERNATIONAL SYSTEM OF UNITS                           | 5-20 |



### 1 General

#### 1.1 Citation

- 1.1.1 These Directives are the Civil Aviation Directive 5 Units of Measurement To Be Used in Air and Ground Operations (CAD 5 Unit of Measurement), Issue 01/Revision 00, and comes into operation on 15 April 2021.
- 1.1.2 This CAD contains the standards, requirements and procedures pertaining to the provision of Rules of the Air. The standards and requirements in this CAD are based mainly on standards and recommended practices (SARPs) stipulated in International Civil Aviation Organization (ICAO) Annex 5 to the Chicago Convention Units of Measurement To Be Used in Air and Ground Operations.

### 1.2 Applicability

1.2.1 This CAD shall apply to any person involved in any aspect of civil aviation air and ground operations in Malaysia as specified in the First Schedule.

Note - refer Appendix 1 for list of person.

#### 1.3 Revocation

1.3.1 This CAD revokes DGCA Directives – Units of Measurement To Be Used in Air and Ground Operations, published on 15 April 2016.

#### 1.4 Definitions

1.4.1 In this CAD, unless the context otherwise requires—

**Aerodrome Operator** a person licenced under the Malaysian Aviation Commission Act 2015 [Act 771] to operate an aerodrome; or a person licenced under the Act to maintain or operate an aerodrome

**Air Navigation Services** means services provided to air traffic during all phases of operations to ensure their safe and efficient movement, and includes

- air traffic control service for the arrival or departure of controlled flights, for controlled flights in controlled areas or for traffic within any manoeuvring area and other aerodrome traffic or any other air traffic control services;
- b) air traffic advisory services provided within advisory airspace to ensure separation, in so far as practical, between aircraft which are operating on flight plans in accordance with the instrument flight rules;
- c) flight information services;
- alerting services provided to notify appropriate organisations regarding aircraft in need of search and rescue aid, and to assist the organisations as may be required;

- e) communications, navigation and surveillance services;
- f) meteorological services for air navigation;
- g) search and rescue services;
- h) aeronautical information services for the provision of aeronautical information and data necessary for the safety, regularity and efficiency of air navigation;
- i) cartography services for air navigation; and
- j) procedure for air navigation services;
- 1.4.2 Any reference to the word "kilogramme" in any subsidiary legislation made under the Civil Aviation Act 1969 is deemed to refer to a unit of measurement of "mass"

**Ampere (A)** means that constant electric current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to  $2 \times 10-7$  newton per metre of length;

**Becquerel (Bq)** means the activity of a radionuclide having one spontaneous nuclear transition per second;

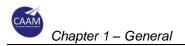
**Candela (cd)** means the luminous intensity, in the perpendicular direction, of a surface of 1/600 000square metre of black body at the temperature of freezing platinum under a pressure of 101 325 Newtons per square metre;

**Celsius temperature (t°C)** means the celsius temperature is equal to the difference toc = T - To between two thermodynamic temperatures T and To where To equals 273.15 Kelvin;

**Coulomb (C)** means the quantity of electricity transported in 1 second by a current of 1 Ampere;

**Degree Celsius (°C)** means the special name for the unit Kelvin for use in stating values of Celsius temperature;

**Farad (F)** means the capacitance of a capacitor between the plates of which there appears a difference of potential of 1 Volt when it is charged by a quantity of electricity equal to 1 Coulomb;


**Foot (ft)** means the length equal to 0.304 8 metre exactly;

**Gray (Gy)** means the energy imparted by ionizing radiation to a mass of matter corresponding to 1Joule per Kilogram;

**Henry (H)** means the inductance of a closed circuit in which an electromotive force of 1 volt is produced when the electric current in the circuit varies uniformly at a rate of 1Ampere per second;

**Hertz (Hz)** means the frequency of a periodic phenomenon of which the period is 1 second:

**Human performance** means the human capabilities and limitations which have an impact on the safety and efficiency of aeronautical operations;



**International System of Units** or **SI units** means a complete and coherent system which consists of base units as specified in Second Schedule, supplementary units as specified in Third Schedule and derived units as specified in Fourth Schedule;

**Joule (J)** means the work done when the point of application of a force of 1 newton is displaced a distance of 1 Metre in the direction of the force;

**Kelvin (K)** means a unit of thermodynamic temperature which is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water;

**Kilogram (kg)** means the unit of mass equal to the mass of the international prototype of the kilogram;

**Knot (kt)** means the speed equal to 1 Nautical mile per hour;

**Litre (L)** means a unit of volume restricted to the measurement of liquids and gases which is equal to 1 cubic decimetre;

**Lumen (Im)** means the luminous flux emitted in a solid angle of 1 steradian by a point source having a uniform intensity of 1 Candela;

**Lux (Ix)** means the illuminance produced by a luminous flux of 1 lumen uniformly distributed over a surface of 1 square metre;

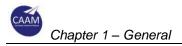
**Metre (m)** means the distance travelled by light in a vacuum during 1/299 792 458 of a second;

**Mole (mol)** means the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 Kilogram of carbon-12 and when the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles or specified groups of such particles;

Nautical mile (NM) means the length equal to 1 852 metres exactly;

**Newton (N)** means the force which when applied to a body having a mass of 1 kilogram gives it an acceleration of 1 Metre per second squared;

**Ohm** ( $\Omega$ ) means the electric resistance between two points of a conductor when a constant difference of potential of 1 Volt, applied between these two points, produces in this conductor a current of 1 Ampere, this conductor not being the source of any electromotive force;


Pascal (Pa) means the pressure or stress of 1 Newton per square metre;

**Radian (rad)** means the plane angle between two radii of a circle which cut off on the circumference an arc equal in length to the radius;

**Second (s)** means the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom;

**Siemens (S)** means the electric conductance of a conductor in which a current of 1 ampere is produced by an electric potential difference of 1 volt;

**Sievert (Sv)** means the unit of radiation dose equivalent corresponding to 1 joule per Kilogram;



**Steradian (sr)** means the solid angle which, having its vertex in the centre of a sphere, cuts off an area of the surface of the sphere equal to that of a square with sides of length equal to the radius of the sphere;

**Tesla (T)** means the magnetic flux density given by a magnetic flux of 1 Weber per square metre;

**Tonne (t)** means the mass equal to 1 000 Kilograms;

**Volt (V)** means the unit of electric potential difference and electromotive force which is the difference of electric potential between two points of a conductor carrying a constant current of 1 Ampere, when the power dissipated between these points is equal to 1 Watt;

Watt (W) means the power which gives rise to the production of energy at the rate of 1 Joule per second; and

**Weber (Wb)** means the magnetic flux which, linking a circuit of one turn, produces in it an electromotive force of 1 volt as it is reduced to zero at a uniform rate in 1 second.





### 2 Units of Measurements

#### 2.1 International System of Units

- 2.1.1 Subject to paragraphs 2.2.1, 2.3.1 and 2.4.1, the International System of Units shall be used as the standard system of units of measurement in any aspect of civil aviation air and ground operations in Malaysia.
- 2.1.2 The prefixes and symbols as specified in Appendix 5 shall be used to form names and symbols of the decimal multiples and sub-multiples of International System of Units.

### 2.2 Application of Units of Measurement

2.2.1 The application of units of measurement for quantities used in international civil aviation air and ground operations shall be in accordance with Appendix 6.

# 2.3 Non-International System of Units for Permanent Use with The International System of Units

2.3.1 The Non-International System of Units as specified in Appendix 7 shall be used either in lieu of, or in addition to, the International System of Units as the primary units of measurement but only as specified in Appendix 6.

# 2.4 Non-International System of Units Alternative Units Permitted for Temporary Use with The International System of Units

2.4.1 The Non-International System of Units as specified in the Appendix 8 may be used, as the alternative units of measurement but only for those specific quantities as specified in Appendix 6, until directed otherwise by the Director General in the directives.

#### 2.5 Conversion Factors

2.5.1 The conversion factors from the Non-International System of Units to the International System of Units shall be as specified in Appendix 9.



INTENTIONALLY LEFT BLANK

## 3 Appendices

### 3.1 Appendix 1 – List of Person

- 3.1.1 List of person stated in Chapter 1 para 1.1.1 are as follows:
  - any person approved by the CEO of CAAM to conduct training for flight crew, aircraft maintenance engineer, flight operations officer/flight dispatcher or any other personnel;
  - b) an operator;
  - c) a person approved by the Director General for the design, manufacture or construction of aeronautical product;
  - d) a person approved by the Director General to conduct continuing airworthiness management, maintenance of aeronautical product and maintenance training;
  - e) an aerodrome operator; and
  - f) any person providing air navigation services.





### 3.2 Appendix 2 – Base Units

| Quantity                  | Unit     | Symbol |
|---------------------------|----------|--------|
| amount of a substance     | mole     | mol    |
| electric current          | ampere   | A      |
| length                    | metre    | m      |
| luminous intensity        | candela  | cd     |
| mass                      | kilogram | kg     |
| thermodynamic temperature | kelvin   | K      |
| time                      | second   | S      |





### 3.3 Appendix 3 – Supplementary Units

| Quantity    | Unit      | Symbol |
|-------------|-----------|--------|
| plane angle | radian    | rad    |
| solid angle | steradian | sr     |





### 3.4 Appendix 4 – Derived Units

| Quantity                                                      | Unit      | Symbol | Derivation |
|---------------------------------------------------------------|-----------|--------|------------|
| absorbed dose (radiation)                                     | gray      | Gy     | J/kg       |
| activity of radionuclides                                     | becquerel | Bq     | l/s        |
| capacitance                                                   | farad     | F      | C/V        |
| conductance                                                   | siemens   | S      | A/V        |
| dose equivalent (radiation)                                   | sievert   | Sv     | J/kg       |
| electric potential, potential difference, electromotive force | volt      | V      | W/A        |
| electric resistance                                           | ohm       | Ω      | V/A        |
| energy, work, quantity of heat                                | joule     | J      | N ⋅m       |
| force                                                         | newton    | N      | kg ⋅m/s²   |
| frequency (of a periodic phenomenon)                          | hertz     | Hz     | l/s        |
| illuminance                                                   | lux       | lx     | lm/m²      |
| inductance                                                    | henry     | Н      | Wb/A       |
| luminous flux                                                 | lumen     | lm     | cd ⋅sr     |
| magnetic flux                                                 | weber     | Wb     | V·s        |
| magnetic flux density                                         | tesla     | Т      | Wb/m²      |
| power, radiant flux                                           | watt      | W      | J/s        |
| pressure, stress                                              | pascal    | Pa     | N/m²       |
| quantity of electricity, electric charge                      | coulomb   | С      | A ·s       |



### 3.5 Appendix 5 – SI Unit Prefixes

| Multiplication factor                        | Prefix | Symbol |
|----------------------------------------------|--------|--------|
| 1 000 000 000 000 000 000 = 10 <sup>18</sup> | exa    | Е      |
| 1 000 000 000 000 000 = 10 <sup>15</sup>     | peta   | Р      |
| 1 000 000 000 000 = 10 <sup>12</sup>         | tera   | Т      |
| 1 000 000 000 = 10 <sup>9</sup>              | giga   | G      |
| 1 000 000 = 10 <sup>6</sup>                  | mega   | М      |
| 1 000 = 10 <sup>3</sup>                      | kilo   | k      |
| $100 = 10^2$                                 | hecto  | h      |
| $10 = 10^1$                                  | deca   | da     |
| $0.1 = 10^{-1}$                              | deci   | d      |
| $0.01 = 10^{-2}$                             | centi  | С      |
| $0.001 = 10^{-3}$                            | milli  | m      |
| $0.000\ 001 = 10^{-6}$                       | micro  | μ      |
| $0.000\ 000\ 001 = 10^{-9}$                  | nano   | n      |
| $0.000\ 000\ 000\ 001 = 10^{-12}$            | pico   | р      |
| $0.000\ 000\ 000\ 001 = 10^{-15}$            | femto  | f      |
| $0.000\ 000\ 000\ 000\ 001 = 10^{-18}$       | atto   | а      |



# 3.6 Appendix 6 – Standard Application of Specific Units of Measurement

| Ref. No      | Quantity                                                                                                                                                                                  | Primary unit (SI unit symbol) | Non-SI alternative unit (symbol) |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|
| 1. Direction | on/Space/Time                                                                                                                                                                             |                               |                                  |
| 1.1          | altitude                                                                                                                                                                                  | m                             | ft                               |
| 1.2          | area                                                                                                                                                                                      | m²                            |                                  |
| 1.3          | distance (long) <sup>a)</sup>                                                                                                                                                             | km                            | NM                               |
| 1.4          | distance (short)                                                                                                                                                                          | m                             |                                  |
| 1.5          | elevation                                                                                                                                                                                 | m                             | ft                               |
| 1.6          | endurance                                                                                                                                                                                 | h and min                     |                                  |
| 1.7          | height                                                                                                                                                                                    | m                             | ft                               |
| 1.8          | latitude                                                                                                                                                                                  | 0 1 11                        |                                  |
| 1.9          | length                                                                                                                                                                                    | m                             |                                  |
| 1.10         | longitude                                                                                                                                                                                 | 0 1/11                        |                                  |
| 1.11         | plane angle (when required, decimal subdivisions of the degree shall be used)                                                                                                             | °                             |                                  |
| 1.12         | runway length                                                                                                                                                                             | m                             |                                  |
| 1.13         | runway visual range                                                                                                                                                                       | m                             |                                  |
| 1.14         | tank capacities (aircraft) <sup>b)</sup>                                                                                                                                                  | L                             |                                  |
| 1.15         | time                                                                                                                                                                                      | s<br>min<br>h                 |                                  |
|              |                                                                                                                                                                                           | d<br>week<br>month<br>year    |                                  |
| 1.16         | visibility <sup>c)</sup>                                                                                                                                                                  | km                            |                                  |
| 1.17         | volume                                                                                                                                                                                    | m³                            |                                  |
| 1.18         | wind direction (wind directions other than for a landing and take-off shall be expressed in degrees true; for landing and takeoff wind directions shall be expressed in degrees magnetic) | 0                             |                                  |
| 2. Mass-re   | elated                                                                                                                                                                                    |                               |                                  |
| 2.1          | air density                                                                                                                                                                               | kg/m³                         |                                  |
| 2.2          | area density                                                                                                                                                                              | kg/m²                         |                                  |
| 2.3          | cargo capacity                                                                                                                                                                            | kg                            |                                  |



| Ref. No    | Quantity                    | Primary unit (SI unit symbol) | Non-SI alternative unit (symbol) |  |
|------------|-----------------------------|-------------------------------|----------------------------------|--|
| 2.4        | cargo density               | kg/m³                         | , (a)                            |  |
| 2.5        | density (mass density)      | kg/m³                         | n <sup>3</sup>                   |  |
| 2.6        | fuel capacity (gravimetric) | kg                            |                                  |  |
| 2.7        | gas density                 | kg/m³                         |                                  |  |
| 2.8        | gross mass or payload       | kg<br>t                       |                                  |  |
| 2.9        | hoisting provisions         | kg                            |                                  |  |
| 2.10       | linear density              | kg/m                          |                                  |  |
| 2.11       | liquid density              | kg/m³                         |                                  |  |
| 2.12       | mass                        | kg                            |                                  |  |
| 2.13       | moment of inertia           | kg ⋅m²                        |                                  |  |
| 2.14       | moment of momentum          | kg ⋅m²/s                      |                                  |  |
| 2.15       | momentum                    | kg ·m/s                       |                                  |  |
| 3. Force-r | related                     |                               |                                  |  |
| 3.1        | air pressure (general)      | kPa                           |                                  |  |
| 3.2        | altimeter setting           | hPa                           |                                  |  |
| 3.3        | atmospheric pressure        | hPa                           |                                  |  |
| 3.4        | bending moment              | kN⋅m                          |                                  |  |
| 3.5        | force                       | N                             |                                  |  |
| 3.6        | fuel supply pressure        | kPa                           |                                  |  |
| 3.7        | hydraulic pressure          | kPa                           |                                  |  |
| 3.8        | modulus of elasticity       | k                             |                                  |  |
| 3.9        | pressure                    | kPa                           |                                  |  |
| 3.10       | stress                      | MPa                           |                                  |  |
| 3.11       | surface tension             | mN/m                          |                                  |  |
| 3.12       | thrust                      | kN                            |                                  |  |
| 3.13       | torque                      | N ·m                          |                                  |  |
| 3.14       | vacuum                      | Pa                            |                                  |  |
| 4. Mechai  | nics                        |                               |                                  |  |
| 4.1        | airspeed <sup>d)</sup>      | km/h                          | kt                               |  |
| 4.2        | angular acceleration        | rad/s <sup>2</sup>            |                                  |  |
| 4.3        | angular velocity            | rad/s                         |                                  |  |
| 4.4        | energy or work              | J                             |                                  |  |



| Ref. No   | Quantity                                                                   | Primary unit (SI unit symbol)         | Non-SI alternative unit (symbol) |
|-----------|----------------------------------------------------------------------------|---------------------------------------|----------------------------------|
| 4.5       | equivalent shaft power                                                     | kW                                    |                                  |
| 4.6       | frequency                                                                  | Hz                                    |                                  |
| 4.7       | ground speed                                                               | km/h                                  | kt                               |
| 4.8       | impact                                                                     | J/m²                                  |                                  |
| 4.9       | kinetic energy absorbed by brakes                                          | MJ                                    |                                  |
| 4.10      | linear acceleration                                                        | m/s²                                  |                                  |
| 4.11      | power                                                                      | kW                                    |                                  |
| 4.12      | rate of trim                                                               | °/s                                   |                                  |
| 4.13      | shaft power                                                                | kW                                    |                                  |
| 4.14      | velocity                                                                   | m/s                                   |                                  |
| 4.15      | vertical speed                                                             | m/s                                   | ft/min                           |
| 4.16      | wind speed <sup>e)</sup>                                                   | m/s                                   | kt                               |
| 5. Flow   |                                                                            |                                       |                                  |
| 5.1       | engine airflow                                                             | kg/s                                  |                                  |
| 5.2       | engine waterflow                                                           | kg/h                                  |                                  |
| 5.3       | fuel consumption (specific) piston engines turbo-shaft engines jet engines | kg/(kW ·h)<br>kg/(kW ·h)<br>kg/(kN·h) |                                  |
| 5.4       | fuel flow                                                                  | kg/h                                  |                                  |
| 5.5       | fuel tank filling rate (gravimetric)                                       | kg/min                                |                                  |
| 5.6       | gas flow                                                                   | kg/s                                  |                                  |
| 5.7       | liquid flow (gravimetric)                                                  | g/s                                   |                                  |
| 5.8       | liquid flow (volumetric)                                                   | L/s                                   |                                  |
| 5.9       | mass flow                                                                  | kg/s                                  |                                  |
| 5.10      | oil consumption<br>gas turbine<br>piston engines (specific)                | kg/h<br>g/(kW ⋅h)                     |                                  |
| 5.11      | oil flow                                                                   | g/s                                   |                                  |
| 5.12      | pump capacity                                                              | L/min                                 |                                  |
| 5.13      | ventilation airflow                                                        | m³/min                                |                                  |
| 5.14      | viscosity (dynamic)                                                        | Pa ⋅s                                 |                                  |
| 5.15      | viscosity (kinematic)                                                      | m²/s                                  |                                  |
| 6. Thermo | odynamics                                                                  |                                       | 1                                |
| 6.1       | coefficient of heat transfer                                               | $W/(m^2 \cdot K)$                     |                                  |



| Ref. No     | Quantity                             | Primary unit (SI unit symbol)           | Non-SI alternative unit (symbol) |
|-------------|--------------------------------------|-----------------------------------------|----------------------------------|
| 6.2         | heat flow per unit area              | J/m <sup>2</sup>                        |                                  |
| 6.3         | heat flow rate                       | W                                       |                                  |
| 6.4         | humidity (absolute)                  | g/kg                                    |                                  |
| 6.5         | coefficient of linear expansion      | °C <sup>-1</sup>                        |                                  |
| 6.6         | quantity of heat                     | J                                       |                                  |
| 6.7         | temperature                          | °C                                      |                                  |
| 7. Electric | city and magnesium                   |                                         |                                  |
| 7.1         | capacitance                          | F                                       |                                  |
| 7.2         | conductance                          | S                                       |                                  |
| 7.3         | conductivity                         | S/m                                     |                                  |
| 7.4         | current density                      | A/m²                                    |                                  |
| 7.5         | electric current                     | A                                       |                                  |
| 7.6         | electric field strength              | C/m <sup>2</sup>                        |                                  |
| 7.7         | electric potential                   | V                                       |                                  |
| 7.8         | electromotive force                  | V                                       |                                  |
| 7.9         | magnetic field strength              | A/m                                     |                                  |
| 7.10        | magnetic flux                        | Wb                                      |                                  |
| 7.11        | magnetic flux density                | Т                                       |                                  |
| 7.12        | power                                | W                                       |                                  |
| 7.13        | quantity of electricity              | С                                       |                                  |
| 7.14        | resistance                           | Ω                                       |                                  |
| 8. Light a  | nd related electromagnetic radiation | S                                       |                                  |
| 8.1         | illuminance                          | lx                                      |                                  |
| 8.2         | luminance                            | cd/m <sup>2</sup>                       |                                  |
| 8.3         | luminous exitance                    | lm/m²                                   |                                  |
| 8.4         | luminous flux                        | lm                                      |                                  |
| 8.5         | luminous intensity                   | cd                                      |                                  |
| 8.6         | quantity of light                    | lm ⋅s                                   |                                  |
| 8.7         | radiant energy                       | J                                       |                                  |
| 8.8         | wavelength                           | m                                       |                                  |
| 9. Acoust   | ics                                  |                                         |                                  |
| 9.1         | frequency                            | Hz                                      |                                  |
| 9.2         | mass density                         | kg/m³                                   |                                  |
| ·           |                                      | i e e e e e e e e e e e e e e e e e e e |                                  |

| Ref. No   | Quantity                          | Primary unit (SI unit symbol) | Non-SI alternative unit (symbol) |
|-----------|-----------------------------------|-------------------------------|----------------------------------|
| 9.3       | noise level                       | dB <sup>e)</sup>              |                                  |
| 9.4       | period, periodic time             | S                             |                                  |
| 9.5       | sound intensity                   | W/m²                          |                                  |
| 9.6       | sound power                       | W                             |                                  |
| 9.7       | sound pressure                    | Pa                            |                                  |
| 9.8       | sound level                       | dB <sup>f)</sup>              |                                  |
| 9.9       | static pressure (instantaneous)   | Pa                            |                                  |
| 9.10      | velocity of sound                 | m/s                           |                                  |
| 9.11      | volume velocity (instantaneous)   | m³/s                          |                                  |
| 9.12      | wavelength                        | m                             |                                  |
| 10. Nucle | ar physics and ionizing radiation |                               |                                  |
| 10.1      | absorbed dose                     | Gy                            |                                  |
| 10.2      | absorbed dose rate                | Gy/s                          |                                  |
| 10.3      | activity of radionuclides         | Bq                            |                                  |
| 10.4      | dose equivalent                   | Sv                            |                                  |
| 10.5      | radiation exposure                | C/kg                          |                                  |
| 10.6      | exposure rate                     | C/kg ·s                       |                                  |

- a) As used in navigation, generally in excess of 4 000 m.
- b) Such as aircraft fuel, hydraulic fluids, water, oil and high pressure oxygen vessels.
- c) Visibility of less than 5 km may be given in m.
- d) Airspeed is sometimes reported in flight operations in terms of the ratio MACH number.
- e) A conversion of 1 kt = 0.5 m/s is used for the representation of wind speed.
- f) The decibel (dB) is a ratio which may be used as a unit for expressing sound pressure level and sound power level. When used, the reference level must be specified.



### 3.7 Appendix 7 – Non-SI Units for Use with The SI

| Specific quantities in<br>Seventh Schedule<br>related to | Unit (Non-SI)     | Symbol | Definition (in terms of SI units)    |
|----------------------------------------------------------|-------------------|--------|--------------------------------------|
| mass                                                     | tonne             | t      | $1 t = 10^3 kg$                      |
| plane angle                                              | degree            | 0      | 1° = (π/180) rad                     |
|                                                          | minute            | '      | 1' = (1/60) ° = (π/10 800) rad       |
|                                                          | second            | "      | $1'' = (1/60)' = (\pi/648\ 000)$ rad |
| temperature                                              | degree Celcius    | °C     | 1 unit °C = 1 unit Ka)               |
| time                                                     | minute            | min    | 1 min = 60 s                         |
|                                                          | hour              | h      | 1 h = 60 min = 3 600 s               |
|                                                          | day               | d      | 1 d = 24 h = 86 400 s                |
|                                                          | week, month, year | _      |                                      |
| volume                                                   | litre             | L      | 1 L = 1 dm3 = 10–3m3                 |





# 3.8 Appendix 8 – Non-SI Alternative Units Permitted for Temporary Use with The SI Units

| Specific quantities in Seventh Schedule related to | Unit (Non-SI) | Symbol | Definition(in terms of SI units) |
|----------------------------------------------------|---------------|--------|----------------------------------|
| distance (long)                                    | nautical mile | NM     | 1 NM = 1 852 m                   |
| distance (vertical) <sup>a)</sup>                  | foot          | ft     | 1 ft = 0.304 8 m                 |
| speed                                              | knot          | kt     | 1 kt = 0.514 444 m/s             |
| altitude, elevation, height, vertical speed        |               |        |                                  |





## 3.9 Appendix 9 – Conversion Factors to International System of Units

| To convert from                                                      | to                                 | Multiply by                         |
|----------------------------------------------------------------------|------------------------------------|-------------------------------------|
| abampere                                                             | ampere                             | (A) 1.000 000 *E + 01               |
| abcoulomb                                                            | coulomb                            | (C) 1.000 000 *E + 01               |
| abfarad                                                              | farad                              | (F) 1.000 000 *E + 09               |
| abhenry                                                              | henry                              | (H) 1.000 000 *E - 09               |
| abmho                                                                | siemens                            | (S) 1.000 000 *E + 09               |
| abohm                                                                | ohm                                | (Ω) 1.000 000 *E – 09               |
| abvolt                                                               | volt                               | (V) 1.000 000 *E - 08               |
| acre(U.S. survey)                                                    | square metre (m²)                  | 4.046 873 E + 03                    |
| ampere hour                                                          | coulomb                            | (C) 3.600 000 *E + 03               |
| are                                                                  | square metre                       | (m <sup>2</sup> ) 1.000 000 *E + 02 |
| atmosphere (standard)                                                | pascal (Pa)                        | 1.013 250 *E + 05                   |
| atmosphere (technical = 1 kgf/cm²)                                   | pascal (Pa)                        | 9.806 650 *E + 04                   |
| bar                                                                  | pascal (Pa)                        | 1.000 000 *E + 05                   |
| barrel (for petroleum, 42 U.S. liquid gal)                           | cubic metre (m³)                   | 1.589 873 *E - 01                   |
| British thermal unit (International Table)                           | joule (J)                          | 1.055 056 E + 03                    |
| British thermal unit (mean)                                          | joule (J)                          | 1.055 87 E + 03                     |
| British thermal unit (thermochemical)                                | joule (J)                          | 1.054 350 E + 03                    |
| British thermal unit (39°F)                                          | joule (J)                          | 1.059 67 E + 03                     |
| British thermal unit (59°F)                                          | joule (J)                          | 1.054 80 E + 03                     |
| British thermal unit (60°F)                                          | joule (J)                          | 1.054 68 E + 03                     |
| Btu (International Table) ·ft/h · ft²· °F (k, thermal conductivity)  | watt per metre<br>kelvin (W/m · K) | 1.730 735 E + 00                    |
| Btu (thermochemical) ·ft/h · ft²· °F                                 | watt per metre<br>kelvin (W/m · K) | 1.729 577 E + 00                    |
| Btu (International Table) · in/h · ft²· °F (k, thermal conductivity) | watt per metre<br>kelvin (W/m · K) | 1.442 279 E – 01                    |
| Btu (thermochemical) · in/h · ft²· °F (k, thermal conductivity)      | watt per metre<br>kelvin (W/m · K) | 1.441 314 E - 01                    |
| Btu (International Table) · in/s · ft²· °F (k, thermal conductivity) | watt per metre<br>kelvin (W/m · K) | 5.192 204 E + 02                    |
| Btu (thermochemical) · in/s · ft²· °F (k, thermal conductivity)      | watt per metre<br>kelvin (W/m · K) | 5.188 732 E + 02                    |
| Btu (International Table)/h                                          | watt (W)                           | 2.930 711 E – 01                    |
| Btu (thermochemical)/h                                               | watt (W)                           | 2.928 751 E – 01                    |
| Btu (thermochemical)/min                                             | watt (W)                           | 1.757 250 E + 01                    |



| To convert from                                                | to                                           | Multiply by       |
|----------------------------------------------------------------|----------------------------------------------|-------------------|
| Btu (thermochemical)/s                                         | watt (W)                                     | 1.054 350 E + 03  |
| Btu (International Table)/ft <sup>2</sup>                      | joule per square<br>metre (J/m²)             | 1.135 653 E + 04  |
| Btu (thermochemical)/ft <sup>2</sup>                           | joule per square<br>metre (J/m²)             | 1.134 893 E + 04  |
| Btu (thermochemical)/ft <sup>2</sup> · h                       | watt per square<br>metre (W/m²)              | 3.152 481 E + 00  |
| Btu (thermochemical)/ft <sup>2</sup> · min                     | watt per square<br>metre (W/m²)              | 1.891 489 E + 02  |
| Btu (thermochemical)/ft <sup>2</sup> · s                       | watt per square<br>metre (W/m²)              | 1.134 893 E + 04  |
| Btu (thermochemical)/in²⋅ s                                    | watt per square<br>metre (W/m²)              | 1.634 246 E + 06  |
| Btu (International Table)/h · ft²· °F (C, thermal conductance) | watt per square<br>metre kelvin (W/m ·<br>K) | 5.678 263 E + 00  |
| Btu (thermochemical)/h · ft²· °F (C, thermal conductance)      | watt per square<br>metre kelvin (W/m²-<br>K) | 5.674 466 E + 00  |
| Btu (International Table)/s · ft²· °F                          | watt per square<br>metre kelvin (W/m²·<br>K) | 2.044 175 E + 04  |
| Btu (thermochemical)/s · ft²· °F                               | watt per square<br>metre kelvin (W/m²·<br>K) | 2.042 808 E + 04  |
| Btu (International Table)/lb                                   | joule per kilogram<br>(J/kg)                 | 2.326 000 *E + 03 |
| Btu (thermochemical)/lb                                        | joule per kilogram<br>(J/kg)                 | 2.324 444 E + 03  |
| Btu (International Table)/lb · °F (c, heat capacity)           | joule per kilogram<br>kelvin (J/kg · K)      | 4.186 800 *E + 03 |
| Btu (thermochemical)/lb · °F (c, heat capacity)                | joule per kilogram<br>kelvin (J/kg · K)      | 4.184 000 E + 03  |
| calibre (inch)                                                 | metre (m)                                    | 2.540 000 *E - 02 |
| calorie (International Table)                                  | joule (J)                                    | 4.186 800 *E + 00 |
| calorie (mean)                                                 | joule (J)                                    | 4.190 02 E + 00   |
| calorie (thermochemical)                                       | joule (J)                                    | 4.184 000 *E + 00 |
| calorie (15°C)                                                 | joule (J)                                    | 4.185 80 E + 00   |
| calorie (20°C)                                                 | joule (J)                                    | 4.181 90 E + 00   |
| calorie (kilogram, International Table)                        | joule (J)                                    | 4.186 800 *E + 03 |
| calorie (kilogram, mean)                                       | joule (J)                                    | 4.190 02 E + 03   |
| calorie (kilogram, thermochemical)                             | joule (J)                                    | 4.184 000 *E + 03 |
| cal (thermochemical)/cm <sup>2</sup>                           | joule per square<br>metre (J/m²)             | 4.184 000 *E + 04 |
| cal (International Table)/g                                    | joule per kilogram<br>(J/kg)                 | 4.186 800 *E + 03 |



| To convert from                                                   | to                                             | Multiply by       |
|-------------------------------------------------------------------|------------------------------------------------|-------------------|
| cal (thermochemical)/g                                            | joule per kilogram<br>(J/kg)                   | 4.184 000 *E + 03 |
| cal (International Table)/g · °C                                  | joule per kilogram<br>kelvin (J/kg · K)        | 4.186 800 *E + 03 |
| cal (thermochemical)/g · °C                                       | joule per kilogram<br>kelvin (J/kg · K)        | 4.184 000 *E + 03 |
| cal (thermochemical)/min                                          | watt (W)                                       | 6.973 333 E – 02  |
| cal (thermochemical)/s                                            | watt (W)                                       | 4.184 000 *E + 00 |
| cal (thermochemical)/cm <sup>2</sup> · min                        | watt per square<br>metre (W/m²)                | 6.973 333 E + 02  |
| cal (thermochemical)/cm <sup>2</sup> · s                          | watt per square<br>metre (W/m²)                | 4.184 000 *E + 04 |
| cal (thermochemical)/cm · s · °C                                  | watt per metre<br>kelvin (W/m · K)             | 4.184 000 *E + 02 |
| centimetre of mercury (0°C)                                       | pascal (Pa)                                    | 1.333 22 E + 03   |
| centimetre of water (4°C)                                         | pascal (Pa)                                    | 9.806 38 E + 01   |
| centipoise                                                        | pascal second (Pa · s)                         | 1.000 000 *E - 03 |
| centistokes                                                       | metre squared per second (m²/s)                | 1.000 000 *E – 06 |
| circular mil                                                      | square metre (m <sup>2</sup> )                 | 5.067 075 E - 10  |
| clo                                                               | kelvin metre<br>squared per watt (K<br>· m²/W) | 2.003 712 E - 01  |
| cup                                                               | cubic metre (m³)                               | 2.365 882 E - 04  |
| curie                                                             | becquerel (Bq)                                 | 3.700 000 *E + 10 |
| day (mean solar)                                                  | second (s)                                     | 8.640 000 E + 04  |
| day (sidereal)                                                    | second (s)                                     | 8.616 409 E + 04  |
| degree (angle)                                                    | radian (rad)                                   | 1.745 329 E – 02  |
| °F · h · ft²/Btu (International Table)<br>(R, thermal resistance) | kelvin metre<br>squared per watt (K<br>· m²/W) | 1.761 102 E - 01  |
| °F · h · ft²/Btu (thermochemical)<br>(R, thermal resistance)      | kelvin metre<br>squared per watt (K<br>· m²/W) | 1.762 280 E - 01  |
| dyne                                                              | newton (N)                                     | 1.000 000 *E - 05 |
| dyne · cm                                                         | newton metre (N · m)                           | 1.000 000 *E - 07 |
| dyne/cm <sup>2</sup>                                              | pascal (Pa)                                    | 1.000 000 *E - 01 |
| electronvolt                                                      | joule (J)                                      | 1.602 19 E – 19   |
| EMU of capacitance                                                | farad (F)                                      | 1.000 000 *E + 09 |
| EMU of current                                                    | ampere (A)                                     | 1.000 000 *E + 01 |



| To convert from                     | to                                          | Multiply by       |
|-------------------------------------|---------------------------------------------|-------------------|
| EMU of electric potential           | volt (V)                                    | 1.000 000 *E - 08 |
| EMU of inductance                   | henry (H)                                   | 1.000 000 *E - 09 |
| EMU of resistance                   | ohm (Ω)                                     | 1.000 000 *E – 09 |
| erg                                 | joule (J)                                   | 1.000 000 *E – 07 |
| erg/cm <sup>2</sup> · s             | watt per square<br>metre (W/m²)             | 1.000 000 *E - 03 |
| erg/s                               | watt (W)                                    | 1.000 000 *E - 07 |
| ESU of capacitance                  | farad (F)                                   | 1.112 650 E – 12  |
| ESU of current                      | ampere (A)                                  | 3.335 6 E – 10    |
| ESU of electric potential           | volt (V)                                    | 2.997 9 E + 02    |
| ESU of inductance                   | henry (H)                                   | 8.987 554 E + 11  |
| ESU of resistance                   | ohm (Ω)                                     | 8.987 554 E + 11  |
| faraday (based on carbon-12)        | coulomb (C)                                 | 9.648 70 E + 04   |
| faraday (chemical)                  | coulomb (C)                                 | 9.649 57 E + 04   |
| faraday (physical)                  | coulomb (C)                                 | 9.652 19 E + 04   |
| fathom                              | metre (m)                                   | 1.828 8 E + 00    |
| fermi (femtometre)                  | metre (m)                                   | 1.000 000 *E – 15 |
| fluid ounce (U.S.)                  | cubic metre (m³)                            | 2.957 353 E – 05  |
| foot                                | metre (m)                                   | 3.048 000 *E - 01 |
| foot (U.S. survey)                  | metre (m)                                   | 3.048 006 E - 01  |
| foot of water (39.2°F)              | pascal (Pa)                                 | 2.988 98 E + 03   |
| ft <sup>2</sup>                     | square metre (m²)                           | 9.290 304 *E - 02 |
| ft²/h (thermal diffusivity)         | metre squared per<br>second (m²/s)          | 2.580 640 *E - 05 |
| ft²/s                               | metre squared per<br>second (m²/s)          | 9.290 304 *E – 02 |
| ft³(volume; section modulus)        | cubic metre (m³)                            | 2.831 685 E – 02  |
| ft <sup>3</sup> /min                | cubic metre per<br>second (m³/s)            | 4.719 474 E - 04  |
| ft <sup>3</sup> /s                  | cubic metre per<br>second (m³/s)            | 2.831 685 E – 02  |
| ft <sup>4</sup> (moment of section) | metre to the fourth power (m <sup>4</sup> ) | 8.630 975 E – 03  |
| ft-lbf                              | joule (J)                                   | 1.355 818 E + 00  |
| ft·lbf/h                            | watt (W)                                    | 3.766 161 E – 04  |
| ft-lbf/min                          | watt (W)                                    | 2.259 697 E - 02  |
| ft·lbf/s                            | watt (W)                                    | 1.355 818 E + 00  |



| To convert from                                             | to                                  | Multiply by       |
|-------------------------------------------------------------|-------------------------------------|-------------------|
| ft·poundal                                                  | joule (J)                           | 4.214 011 E – 02  |
| free fall, standard (g)                                     | metre per second squared (m/s²)     | 9.806 650 *E + 00 |
| ft/h                                                        | metre per second<br>(m/s)           | 8.466 667 E – 05  |
| ft/min                                                      | metre per second<br>(m/s)           | 5.080 000 *E - 03 |
| ft/s                                                        | metre per second (m/s)              | 3.048 000 *E - 01 |
| ft/s <sup>2</sup>                                           | metre per second squared (m/s²)     | 3.048 000 *E - 01 |
| footcandle                                                  | lux (lx)                            | 1.076 391 E + 01  |
| footlambert                                                 | candela per square<br>metre (cd/m²) | 3.426 259 E + 00  |
| gal                                                         | metre per second squared (m/s²)     | 1.000 000 *E – 02 |
| gallon (Canadian liquid)                                    | cubic metre (m³)                    | 4.546 090 E - 03  |
| gallon (U.K. liquid)                                        | cubic metre (m³)                    | 4.546 092 E – 03  |
| gallon (U.S. dry)                                           | cubic metre (m³)                    | 4.404 884 E – 03  |
| gallon (U.S. liquid)                                        | cubic metre (m³)                    | 3.785 412 E - 03  |
| gal (U.S. liquid)/day                                       | cubic metre per<br>second (m³/s)    | 4.381 264 E – 08  |
| gal (U.S. liquid)/min                                       | cubic metre per<br>second (m³/s)    | 6.309 020 E – 05  |
| gal (U.S. liquid)/hp· h<br>(SFC, specific fuel consumption) | cubic metre per joule (m³/J)        | 1.410 089 E – 09  |
| gamma                                                       | tesla (T)                           | 1.000 000 *E - 09 |
| gauss                                                       | tesla (T)                           | 1.000 000 *E - 04 |
| gilbert                                                     | ampere (A)                          | 7.957 747 E – 01  |
| grad                                                        | degree (angular)                    | 9.000 000 *E - 01 |
| grad                                                        | radian (rad)                        | 1.570 796 E – 02  |
| gram                                                        | kilogram (kg)                       | 1.000 000 *E - 03 |
| g/cm <sup>3</sup>                                           | kilogram per cubic<br>metre (kg/m³) | 1.000 000 *E + 03 |
| gram-force/cm <sup>2</sup>                                  | pascal (Pa)                         | 9.806 650 *E + 01 |
| hectare                                                     | square metre (m²)                   | 1.000 000 *E + 04 |
| horsepower (550 ft·lbf/s)                                   | watt (W)                            | 7.456 999 E + 02  |
| horsepower (electric)                                       | watt (W)                            | 7.460 000 *E + 02 |
| horsepower (metric)                                         | watt (W)                            | 7.354 99 E + 02   |
| horsepower (water)                                          | watt (W)                            | 7.460 43 E + 02   |
| horsepower (U.K.)                                           | watt (W)                            | 7.457 0 E + 02    |



| To convert from                     | to                                          | Multiply by       |
|-------------------------------------|---------------------------------------------|-------------------|
| hour (mean solar)                   | second (s)                                  | 3.600 000 E + 03  |
| hour (sidereal)                     | second (s)                                  | 3.590 170 E + 03  |
| hundredweight (long)                | kilogram (kg)                               | 5.080 235 E + 01  |
| hundredweight (short)               | kilogram (kg)                               | 4.535 924 E + 01  |
| inch                                | metre (m)                                   | 2.540 000 *E - 02 |
| inch of mercury (32°F)              | pascal (Pa)                                 | 3.386 38 E + 03   |
| inch of mercury (60°F)              | pascal (Pa)                                 | 3.376 85 E + 03   |
| inch of water (39.2°F)              | pascal (Pa)                                 | 2.490 82 E + 02   |
| inch of water (60°F)                | pascal (Pa)                                 | 2.488 4 E + 02    |
| in <sup>2</sup>                     | square metre (m²)                           | 6.451 600 *E - 04 |
| in³(volume; section modulus)        | cubic metre (m³)                            | 1.638 706 E - 05  |
| in <sup>3</sup> /min                | cubic metre per<br>second (m³/s)            | 2.731 177 E – 07  |
| in <sup>4</sup> (moment of section) | metre to the fourth power (m <sup>4</sup> ) | 4.162 314 E – 07  |
| in/s                                | metre per second<br>(m/s)                   | 2.540 000 *E - 02 |
| in/s <sup>2</sup>                   | metre per second squared (m/s²)             | 2.540 000 *E - 02 |
| kilocalorie (International Table)   | joule (J)                                   | 4.186 800 *E + 03 |
| kilocalorie (mean)                  | joule (J)                                   | 4.190 02 E + 03   |
| kilocalorie (thermochemical)        | joule (J)                                   | 4.184 000 *E + 03 |
| kilocalorie (thermochemical)/min    | watt (W)                                    | 6.973 333 E + 01  |
| kilocalorie (thermochemical)/s      | watt (W)                                    | 4.184 000 *E + 03 |
| kilogram-force (kgf)                | newton (N)                                  | 9.806 650 *E + 00 |
| kgf· m                              | newton metre (N · m)                        | 9.806 650 *E + 00 |
| kgf· s²/m (mass)                    | kilogram (kg)                               | 9.806 650 *E + 00 |
| kgf/cm <sup>2</sup>                 | pascal (Pa)                                 | 9.806 650 *E + 04 |
| kgf/m²                              | pascal (Pa)                                 | 9.806 650 *E + 00 |
| kgf/mm²                             | pascal (Pa)                                 | 9.806 650 *E + 06 |
| km/h                                | metre per second<br>(m/s)                   | 2.777 778 E – 01  |
| kilopond                            | newton (N)                                  | 9.806 650 *E + 00 |
| kW · h                              | joule (J)                                   | 3.600 000 *E + 06 |
| kip (1 000 lbf)                     | newton (N)                                  | 4.448 222 E + 03  |
| kip/in (ksi)                        | pascal (Pa)                                 | 6.894 757 E + 06  |



| To convert from                              | to                                   | Multiply by       |
|----------------------------------------------|--------------------------------------|-------------------|
| knot (international)                         | metre per second<br>(m/s)            | 5.144 444 E – 01  |
| lambert                                      | candela per square<br>metre (cd/m²)  | 1/π *E + 04       |
| lambert                                      | candela per square<br>metre (cd/m²)  | 3.183 099 E + 03  |
| langley                                      | joule per square<br>metre (J/m²)     | 4.184 000 *E + 04 |
| lb · ft² (moment of inertia)                 | kilogram metre<br>squared (kg · m²)  | 4.214 011 E – 02  |
| lb · in <sup>2</sup> (moment of inertia)     | kilogram metre<br>squared (kg · m²)  | 2.926 397 E – 04  |
| lb/ft∙ h                                     | pascal second (Pa · s)               | 4.133 789 E – 04  |
| lb/ft⋅ s                                     | pascal second (Pa · s)               | 1.488 164 E + 00  |
| lb/ft <sup>2</sup>                           | kilogram per square<br>metre (kg/m²) | 4.882 428 E + 00  |
| lb/ft <sup>3</sup>                           | kilogram per cubic<br>metre (kg/m³)  | 1.601 846 E + 01  |
| lb/gal (U.K. liquid)                         | kilogram per cubic<br>metre (kg/m³)  | 9.977 633 E + 01  |
| lb/gal (U.S. liquid)                         | kilogram per cubic<br>metre (kg/m³)  | 1.198 264 E + 02  |
| lb/h                                         | kilogram per second (kg/s)           | 1.259 979 E – 04  |
| lb/hp⋅ h<br>(SFC, specific fuel consumption) | kilogram per joule<br>(kg/J)         | 1.689 659 E – 07  |
| lb/in <sup>3</sup>                           | kilogram per cubic<br>metre (kg/m³)  | 2.767 990 E + 04  |
| lb/min                                       | kilogram per second (kg/s)           | 7.559 873 E – 03  |
| lb/s                                         | kilogram per second (kg/s)           | 4.535 924 E - 01  |
| lb/yd³                                       | kilogram per cubic<br>metre (kg/m³)  | 5.932 764 E - 01  |
| lbf-ft                                       | newton metre (N ·<br>m)              | 1.355 818 E + 00  |
| lbf-ft/in                                    | newton metre per<br>metre (N · m/m)  | 5.337 866 E + 01  |
| lbf∙ in                                      | newton metre (N · m)                 | 1.129 848 E – 01  |
| lbf∙ in/in                                   | newton metre per<br>metre (N · m/m)  | 4.448 222 E + 00  |
| lbf⋅ s/ft²                                   | pascal second (Pa                    | 4.788 026 E + 01  |
| lbf/ft                                       | newton per metre<br>(N/m)            | 1.459 390 E + 01  |
| lbf/ft <sup>2</sup>                          | pascal (Pa)                          | 4.788 026 E + 01  |
| lbf/in                                       | newton per metre<br>(N/m)            | 1.751 268 E + 02  |



| To convert from                     | to                                                 | Multiply by       |
|-------------------------------------|----------------------------------------------------|-------------------|
| lbf/in²(psi)                        | pascal (Pa)                                        | 6.894 757 E + 03  |
| lbf/lb (thrust/weight (mass) ratio) | newton per kilogram<br>(N/kg)                      | 9.806 650 E + 00  |
| light year                          | metre (m)                                          | 9.460 55 E + 15   |
| litre                               | cubic metre (m³)                                   | 1.000 000 *E - 03 |
| maxwell                             | weber (Wb)                                         | 1.000 000 *E – 08 |
| mho                                 | siemens (S)                                        | 1.000 000 *E + 00 |
| microinch                           | metre (m)                                          | 2.540 000 *E - 08 |
| micron                              | metre (m)                                          | 1.000 000 *E - 06 |
| mil                                 | metre (m)                                          | 2.540 000 *E - 05 |
| mile (international)                | metre (m)                                          | 1.609 344 *E + 03 |
| mile (statute)                      | metre (m)                                          | 1.609 3 E + 03    |
| mile (U.S. survey)                  | metre (m)                                          | 1.609 347 E + 03  |
| mile (international nautical)       | metre (m)                                          | 1.852 000 *E + 03 |
| mile (U.K. nautical)                | metre (m)                                          | 1.853 184 *E + 03 |
| mile (U.S. nautical)                | metre (m)                                          | 1.852 000 *E + 03 |
| mi <sup>2</sup> (international)     | square metre (m <sup>2</sup> )                     | 2.589 988 E + 06  |
| mi (U.S. survey)                    | square metre (m)                                   | 2.589 998 E + 06  |
| mi/h (international)                | metre per second<br>(m/s)                          | 4.470 400 *E - 01 |
| mi/h (international)                | kilometre per hour<br>(km/h)                       | 1.609 344 *E + 00 |
| mi/min (international)              | metre per second (m/s)                             | 2.682 240 *E + 01 |
| mi/s (international)                | metre per second<br>(m/s)                          | 1.609 344 *E + 03 |
| millibar                            | pascal (Pa)                                        | 1.000 000 *E + 02 |
| millimetre of mercury (0°C)         | pascal (Pa)                                        | 1.333 22 E + 02   |
| minute (angle)                      | radian (rad)                                       | 2.908 882 E – 04  |
| minute (mean solar)                 | second (s)                                         | 6.000 000 E + 01  |
| minute (sidereal)                   | second (s)                                         | 5.983 617 E + 01  |
| month (mean calendar)               | second(s)                                          | 2.628 000 E + 06  |
| oersted                             | ampere per metre<br>(A/m)                          | 7.957 747 E + 01  |
| ohm centimetre                      | ohm metre (Ω · m)                                  | 1.000 000 *E – 02 |
| ohm circular-mil per ft             | ohm millimetre<br>squared per metre<br>(Ω · mm2/m) | 1.662 426 E – 03  |



| To convert from                    | to                                                                 | Multiply by       |
|------------------------------------|--------------------------------------------------------------------|-------------------|
| ounce (avoirdupois)                | kilogram (kg)                                                      | 2.834 952 E - 02  |
| ounce (troy or apothecary)         | kilogram (kg)                                                      | 3.110 348 E – 02  |
| ounce (U.K. fluid)                 | cubic metre (m³)                                                   | 2.841 307 E - 05  |
| ounce (U.S. fluid)                 | cubic metre (m³)                                                   | 2.957 353 E - 05  |
| ounce-force                        | newton (N)                                                         | 2.780 139 E - 01  |
| ozf· in                            | newton metre (N · m)                                               | 7.061 552 E – 03  |
| oz (avoirdupois)/gal (U.K. liquid) | kilogram per cubic<br>metre (kg/m³)                                | 6.236 021 E + 00  |
| oz (avoirdupois)/gal (U.S. liquid) | kilogram per cubic<br>metre (kg/m³)                                | 7.489 152 E + 00  |
| oz (avoirdupois)/in <sup>3</sup>   | kilogram per cubic<br>metre (kg/m³)                                | 1.729 994 E + 03  |
| oz (avoirdupois)/ft                | kilogram per square<br>metre (kg/m)                                | 3.051 517 E - 01  |
| oz (avoirdupois)/yd²               | kilogram per square<br>metre (kg/m²)                               | 3.390 575 E – 02  |
| parsec                             | metre (m)                                                          | 3.085 678 E + 16  |
| pennyweight                        | kilogram (kg)                                                      | 1.555 174 E – 03  |
| perm (0°C)                         | kilogram per pascal<br>second metre<br>squared (kg/Pa · s ·<br>m²) | 5.721 35 E – 11   |
| perm (23°C)                        | kilogram per pascal<br>second metre<br>squared (kg/Pa · s ·<br>m²) | 5.745 25 E – 11   |
| perm · in (0°C)                    | kilogram per pascal<br>second metre<br>(kg/Pa · s · m)             | 1.453 22 E – 12   |
| perm · in (23°C)                   | kilogram per pascal<br>second metre<br>(kg/Pa · s · m)             | 1.459 29 E – 12   |
| phot                               | lumen per square<br>metre (lm/m²)                                  | 1.000 000 *E + 04 |
| pint (U.S. dry)                    | cubic metre (m <sup>3</sup> )                                      | 5.506 105 E – 04  |
| pint (U.S. liquid)                 | cubic metre (m <sup>3</sup> )                                      | 4.731 765 E – 04  |
| poise (absolute viscosity)         | pascal second (Pa · s)                                             | 1.000 000 *E - 01 |
| pound (lb avoirdupois)             | kilogram (kg)                                                      | 4.535 924 E - 01  |
| pound (troy or apothecary)         | kilogram (kg)                                                      | 3.732 417 E - 01  |
| poundal                            | newton (N)                                                         | 1.382 550 E – 01  |
| poundal/ft <sup>2</sup>            | pascal (Pa)                                                        | 1.488 164 E + 00  |



| To convert from                 | to                                  | Multiply by       |
|---------------------------------|-------------------------------------|-------------------|
| poundal· s/ft²                  | pascal second (Pa · s)              | 1.488 164 E + 00  |
| pound-force (lbf)               | newton (N)                          | 4.448 222 E + 00  |
| quart (U.S. dry)                | cubic metre (m³)                    | 1.101 221 E – 03  |
| quart (U.S. liquid)             | cubic metre (m³)                    | 9.463 529 E - 04  |
| rad (radiation dose absorbed)   | gray (Gy)                           | 1.000 000 *E - 02 |
| rem                             | sievert (Sv)                        | 1.000 000 *E – 02 |
| rhe                             | 1 per pascal second (1/Pa · s)      | 1.000 000 *E + 01 |
| roentgen                        | coulomb per<br>kilogram (C/kg)      | 2.58 E – 04       |
| second (angle)                  | radian (rad)                        | 4.848 137 E – 06  |
| second (sidereal)               | second (s)                          | 9.972 696 E - 01  |
| slug                            | kilogram (kg)                       | 1.459 390 E + 01  |
| slug/ft⋅ s                      | pascal second (Pa · s)              | 4.788 026 E + 01  |
| slug/ft <sup>3</sup>            | kilogram per cubic<br>metre (kg/m³) | 5.153 788 E + 02  |
| statampere                      | ampere (A)                          | 3.335 640 E – 10  |
| statcoulomb                     | coulomb (C)                         | 3.335 640 E – 10  |
| statfarad                       | farad (F)                           | 1.112 650 E – 12  |
| stathenry                       | henry (H)                           | 8.987 554 E + 11  |
| statmho                         | siemens (S)                         | 1.112 650 E – 12  |
| statohm                         | ohm (Ω)                             | 8.987 554 E + 11  |
| statvolt                        | volt (V)                            | 2.997 925 E + 02  |
| stere                           | cubic metre (m³)                    | 1.000 000 *E + 00 |
| stilb                           | candela per square<br>metre (cd/m²) | 1.000 000 *E + 04 |
| stokes (kinematic viscosity)    | metre squared per<br>second (m²/s)  | 1.000 000 *E - 04 |
| therm                           | joule (J)                           | 1.055 056 E + 08  |
| ton (assay)                     | kilogram (kg)                       | 2.916 667 E - 02  |
| ton (long, 2 240 lb)            | kilogram (kg)                       | 1.016 047 E + 03  |
| ton (metric)                    | kilogram (kg)                       | 1.000 000 *E + 03 |
| ton (nuclear equivalent of TNT) | joule (J)                           | 4.184 E + 09      |
| ton (refrigeration)             | watt (W)                            | 3.516 800 E + 03  |
| ton (register)                  | cubic metre (m³)                    | 2.831 685 E + 00  |
| ton (short, 2 000 lb)           | kilogram (kg)                       | 9.071 847 E + 02  |



| To convert from              | to                                  | Multiply by                          |
|------------------------------|-------------------------------------|--------------------------------------|
| ton (long)/yd <sup>3</sup>   | kilogram per cubic<br>metre (kg/m³) | 1.328 939 E + 03                     |
| ton (short)/h                | kilogram per second<br>(kg/s)       | 2.519 958 E - 01                     |
| ton-force (2 000 lbf)        | newton (N)                          | 8.896 444 E + 03                     |
| tonne                        | kilogram (kg)                       | 1.000 000 *E + 03                    |
| torr (mm Hg, 0°C)            | pascal (Pa)                         | 1.333 22 E + 02                      |
| unit pole                    | weber (Wb)                          | 1.256 637 E – 07                     |
| W·h                          | joule (J)                           | 3.600 000 *E + 03                    |
| W·s                          | joule (J)                           | 1.000 000 *E + 00                    |
| W/cm <sup>2</sup>            | watt per square<br>metre (W/m²)     | 1.000 000 *E + 04                    |
| W/in <sup>2</sup>            | watt per square<br>metre (W/m²)     | 1.550 003 E + 03                     |
| yard                         | metre (m)                           | 9.144 000 *E - 01                    |
| yd <sup>2</sup>              | square metre (m²)                   | 8.361 274 E – 01                     |
| yd <sup>3</sup>              | cubic metre (m³)                    | 7.645 549 E – 01                     |
| yd³/min                      | cubic metre per<br>second (m³/s)    | 1.274 258 E – 02                     |
| year (calendar)              | second (s)                          | 3.153 600 E + 07                     |
| year (sidereal)              | second (s)                          | 3.155 815 E + 07                     |
| year (tropical)              | second (s)                          | 3.155 693 E + 07                     |
| Celsius temperature (t°C)    | Kelvin temperature (tK)             | tK = t°C + 273.15                    |
| Fahrenheit temperature (t°F) | Celsius temperature (t°C)           | $t^{\circ}C = (t^{\circ}F - 32)/1.8$ |
| Fahrenheit temperature (t°F) | Kelvin temperature (tK)             | $tK = (t^{\circ}F + 459.67)/1.8$     |
| Kelvin temperature (tK)      | Celsius temperature (t°C)           | $t^{\circ}C = tK - 273.15$           |
| Rankine temperature (t°R)    | Kelvin temperature (tK)             | tK = t°R/1.8                         |

INTENTIONALLY LEFT BLANK